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Overview

A simple kinetic transport theory predicts strong linear dependence
of edge intrinsic toroidal rotation on Rx = (Rx — Rmid)/a, with Rx
the major-radial position of the X-point.

» “Edge’ means the radial range of a cm or so both inside and
outside the LCFS, where spatial variation is rapid.

> An analytic calculation yields a simple formula vpeq for the
toroidal rotation at the core-edge boundary.

A series of Ohmic L-mode shots on TCV, scanning Rx, showed:
» Entire rotation profile shifts rather rigidly as Rx changes.
> Linear dependence of edge rotation on Rx (v)
» Rotation sign change for adequately outboard X-point (v)

» Fits of rotation vs Rx give reasonable values for theory's two
input parameters (v')
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Outline

» Theoretical model

» Assumptions

» Ingredients of analytical calculation
» Cartoon of model

» Resulting predictions

» Experiment

TCV features

Rotation profiles for different Rx

Qualitative and quantitative comparison with model
Consideration of other models
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Experimentally, tokamak plasmas rotate spontaneously,
without external torque.
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Rice et al PRL 2011, Fig. 5b deGrassie et al NF 2009, Fig. 7
» Co-current in the edge. » Spin-up at L—H transition.

> vy /vt ~ O(0.1) at the core-edge bound. » Roughly proportional to W/I,.

» Edge rotation proportional to T or VT7?



Model
Rotation

Theory

Edge orderings relevant for intrinsic rotation

Influence of SOL=-nonlocal, steep gradients, strong turbulence, very anisotropic
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Theory Model
Rotation

A simple kinetic transport theory models edge intrinsic

rotation.
Jefi+ v o fi — 57 (sin0) d f; — Ax [D (x,0) dxfi] =0

Extremely simple kinetic transport model contains only:  A#

L Lo

> Free flow along the magnetic field “— " m —_—

» Radially-directed curvature drift fi—fio |periodic fi—0

> Radial diffusion due to turbulence i U|\>0:fi:0;m
» Diffusivity stronger outboard, decays in x

> Two-region geometry 0

» Confined edge: periodic in 0
» SOL: pure outflow to divertor legs

After some variable transforms, obtain steady-state equation
dgfi = Defr (v)) 9% (e7¥0xf;) ,
in which Degr depends on the sign of v.
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Theory Model

Rotation

Asymmetric diffusivity caused by drift orbits’ interaction with
ballooning transport and X-point angle.
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Theory Model
Rotation

Asymmetric diffusivity caused by drift orbits’ interaction with
ballooning transport and X-point angle.

(a)

HFS
SAT
SdT

Edge rotation may become counter-current for outboard X-point!
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Theory Model
Rotation

Suprathermal ions drive a robust momentum flux.
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Assume a Maxwellian at the boundary with the core,
fio (v)) = (21) 2 exp(—v2/2),

then moments of the transport are just

. A hd ~ - 1 -
rpz/fwr(vn) dv, ”lev\\r(v\\) dv, :E/wvlfr(v”) M
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Theory Model
Rotation

Vanishing momentum transport: pedestal-top intrinsic rotation.
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» X-point angle dependence » L-H spin-up due to } T;, |} Ly



Description
Experiment Results

TCViswell-suited to investigate Rx- dependent edge rotation.
Extreme geometric flexibility:

» Vary Rx from inner to outer wall
» Both LSN and USN

Diagnostic NBI for CXRS on C%*:
> applies negligible torque (~1%7y)
» LFS & HFS viewing chords
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Parameter ranges for this experiment:

X-point major radius (Rx) 0.675-1.085m A3t
Major radius (Rp) 0.88-0.89m N \‘\\ : l/,/
Minor radius (a) 0.22-0.23m B a 4
Edge safety factor (geng) 3.6-4
Plasma current (/) 150-155kA Q
Electron density (neavg) 1.4-2.2x10m=3 K j
Elongation (k) 1.35-1.45 g - &
Triangularity -03-+04 Figures from A. Bortolon
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Description
Experiment Results

Changing Rx indeed shifts the boundary rotation, shifting
the whole rotation profile with it.
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Measured carbon rotation profiles for an inboard (Rx = 71cm) and outboard
(Rx = 108cm) X-point.

Stoltzfus-Dueck Edge Intrinsic Rotation (14)



Description
Experiment Results

Changing Rx indeed shifts the boundary rotation, shifting
the whole rotation profile with it.
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Measured carbon rotation profiles for an inboard (Rx = 71cm) and outboard
(Rx = 108cm) X-point.
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Description
Experiment Results

Theory-Experiment agreement is surprisingly good.

25

Roughly linear dep of vexp on Rx. 20

15

» Counter-current for large Rx. o

Reasonable fitting parameters:
» d. ~ 1.1: outboard ballooning

Vexp(km/s)

0
» Ly~4lcm~ 1507 -5
» Ly ~3.8cm from LP meas -10
> Ly~ 1-2L 1. on other expts 15 o5 5 05 ]

USN~ 6km/s more counter-current than LSN.
Some mid-range Rx inaccessible due to machine constraints
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Description
Experiment Results

The basic trend holds for alternate radial positions.

® LSN
A USN
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Description
Experiment Results

Core rotation reversal seems to have little effect on edge rotation.

3ot

Spontaneous core rotation reversal o0l

well-known on TCV (Bortolon et al % 1ol
PRL 2006) <

w0 07

Accidentally triggered reversal in shots 5_10,

48152-48153, due to larger /, o0

20
Theory: in the absence of 10
actual core torque, E
rotation peaking does not &
affect edge momentum
flux, thus intrinsic ~10
rotation is maintained. 4 05 0 05 1]-1 05 0 05 1
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Description
Experiment Results

Can transport-driven SOL flows drive rotation in the
confined plasma?

Intrinsic rotation velocity is determined by vanishing momentum flux.
Although transport-driven toroidally-asymmetric flows exist in the theoretical
calculation, they do not drive rotation at the boundary with the core plasma.

vuagf 3v L fi—dx[D(x,0)0dxfi] =0
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Description
Experiment Results

Favorable/unfavorable VB comparison can clarify physics.
Reverses transport-driven flows but not orbit shifts and their flows.

VB <
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Description
Experiment Results

Rotation data consistent with dominant drive by orbit shifts.
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Dominant variation of rotation unaffected by LSN—USN.

However, reason for LSN-USN rotation difference remains unexplained, maybe
geometry interacts with: collisional effects, trapped particles, particle sources/sinks

Or maybe LSN vs USN just affects turbulence properties like d. or Ly
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Description
Experiment Results

Do orbit losses explain rotation at the core-edge boundary?
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Description
Experiment Results

Summary
» Simple theory for intrinsic rotation due to interaction of:

» spatial variation of turbulence
» different radial orbit excursions for co- and counter-current passing ions

Predicted rotation depends strongly on Rx

v

Performed series of Ohmic L-mode shots on TCV, scanning Rx

v

» Change of Ry shifts entire rotation profile, fairly rigidly

v

Experiment and theory appear fairly consistent

> Vexp depends about linearly on Rx, goes counter-current for large Rx.
» Linear fit results in reasonable adjustable parameters d, Ly.

» Basic results hold for various alternate radial positions.

> Vexp appears fairly insensitive to core rotation reversal.

v

Possible further topics:

» E x B drift, collisions, real magnetic geometry and orbits/trapping
» Self-consistent calculation of turbulence properties: d., Ly, ...
» Why is USN rotation more counter-current than LSN?
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